ANSYS 2D Magnetostatic and Structural Analysis of sPHENIX Coil at Full Current

John Cozzolino August 3, 2016

ANSYS Maxwell Analysis of sPHENIX Coil

- 2D Magnetostatic FE analysis of complete coil
 - Geometry and current densities are taken from Wuzheng Meng's magnetic data – 6/17/2015.
 - Coil center is shifted 3cm north relative to the iron.
 - Coils are divided into 24 blocks, each with corresponding current densities at maximum power (4600 A).
 - Iron enclosure is approximated by an axisymmetric cylinder, capped at both ends.
 - » Cylinder weight is equal to the actual iron weight (approximately 1,323,000 lb).
 - » Pole iron thickness and axial distance from coil ends is the same as the actual.
 - » Iron cylinder I.D. is set to the sidewall radial distance closest to the coil.
 - Lorentz forces are calculated using ANSYS Maxwell and then exported to the mechanical model.

Labels on 24 Solenoid Coils

(Not to Scale) W. Meng, 6/17/15

sPHENIX 24-Coils Information (W. Meng, 6/17/15)

		Axial Co	enter Zc (cm)	Coil Axial Length	Current Density
Coil No.	Rc (cm)	shift=0	shift=3cm	dz (cm)	J (A/cm^2)
1	152.00	-35.56	-32.56	71.12	2502.564
2	154.04	-37.12	-34.12	74.23	2519.067
3a	152.00	-155.12	-152.12	12.90	4205.118
3b	152.00	-168.02	-165.02	12.90	4205.118
4	152.00	-135.75	-132.75	25.81	4205.118
5	152.00	-109.90	-106.90	25.81	4205.118
6	152.00	-84.05	-81.05	25.81	4205.118
7a	154.04	-155.65	-152.65	12.53	4204.423
7b	154.04	-168.17	-165.17	12.53	4204.423
8	154.04	-136.86	-133.86	25.05	4204.423
9	154.04	-111.81	-108.81	25.05	4204.423
10	154.04	-86.76	-83.76	25.05	4204.423
11	152.00	35.56	38.56	71.12	2502.564
12	154.04	37.12	40.12	74.23	2519.067
13a	152.00	155.12	158.12	12.90	4205.118
13b	152.00	168.02	171.02	12.90	4205.118
14	152.00	135.75	138.75	25.81	4205.118
15	152.00	109.90	112.90	25.81	4205.118
16	152.00	84.05	87.05	25.81	4205.118
17a	154.04	155.65	158.65	12.53	4204.423
17b	154.04	168.17	171.17	12.53	4204.423
18	154.04	136.00	139.00	25.05	4204.423
19	154.04	111.81	114.81	25.05	4204.423
20	154.04	86.76	89.76	25.05	4204.423

System Origin is Located at Center of sPhenix Yoke Coil thickness is about 2 cm (for inner or outer layer)

ANSYS FE Structural Analysis of sPHENIX Coil

- 2d Axisymmetric Steady-State FE Analysis of Complete Coil
 - Includes external aluminum bobbin and G-10 end fillers
 - Lorentz forces are imported directly from the ANSYS Maxwell Magnetostatic FE model at 4600 A.
 - Thermal stresses during cool-down from RT to 4K are included.
 - Mechanical properties vs. temperature are included.
 - Coil properties E and CTE are adjusted for percentage of insulation vs.
 conductor (Ref Ansaldo Dwg# 620RM07142, pg. 1).
 - » Radial direction 2.0% insulation (all coils)
 - » Axial direction 4.7% (middle coils)
 - » Axial direction 8.1% (end coils)
 - All connections (contacts) are bonded.
 - Tensile and shear stresses are studied throughout the coil
 - Shear stress limit: 30 MPa (4350 psi)
 - Tensile stress limit: 30 MPa

ANSYS FE Structural Analysis of sPHENIX Coil (cont'd)

- Stresses and deflections will be compared to those derived in the previous analysis from 7/16/15.
 - Lorentz forces were first calculated by W. Meng using Opera.
 - They were then input by hand as coil face pressures into an ANSYS static structural model.
 - Direct mapping of these forces from ANSYS Maxwell to a static structural model should provide more accurate results.
 - What follows is a side-by-side comparison of results from the two analyses.

FE Mesh for Static Structural Model (Lead "South" End)

Magnetic Flux Vectors at 4600 A (ANSYS Maxwell)

Radial Deflection @ Cool-down (LE view - mm) 7/16/2015

Radial Deflection @ Cool-down (LE view - mm) 7/28/2016

Radial Deflection @ Max Current (LE view - mm) 7/16/2015

Radial Deflection @ Max Current using MAXWELL (LE view - mm) 7/28/2016

Axial Deflection @ Cool-down (LE view - mm) 7/16/2015

Axial Deflection @ Cool-down (LE view - mm) 7/28/2016

Axial Deflection @ Max Current (LE view - mm) 7/16/2015

Axial Deflection @ Max Current using MAXWELL (LE view - mm) 7/28/2016

Radial Deflection @ Max Current w/o Cool-down Effects (LE view - mm) 7/28/2016

Axial Deflection @ Max Current w/o Cool-down Effects (LE view - mm) 7/28/2016

Equivalent Stress in Aluminum Bobbin @ Cool-down (LE view - MPa) 7/16/2015

Equivalent Stress in Aluminum Bobbin @ Cool-down (LE view - MPa) 7/28/2016

Equivalent Stress in Aluminum Bobbin @ Max Current (LE view - MPa) 7/16/2015

Equivalent Stress in Aluminum Bobbin @ Max Current (LE view - MPa) 7/28/2016

Coil Lead End Maximum Tensile Stress @ Full Power (MPa)

7/16/2015

7/28/2016 (MAXWELL)

Coil Lead End Maximum Shear Stress @ Full Power (MPa)

Coil Lead End Axial Stress at Full Power (MPa) - 7/16/2015

Lead End Axial Stress at Full Power (MPa) using MAXWELL – 7/28/2016

Coil Stresses and Deflections at Full Power using MAXWELL – 7/28/2016

Magnetic Flux Vectors at 4600 A – No Iron

Coil Lorentz Force Vectors – No Iron

Coil Lead End Maximum Shear Stress @ Full Power (MPa) Iron vs. No Iron 7/28/2016

With Iron No Iron

Summary & Conclusions

- Generally good agreement between both FE analyses
- Latest analysis calculates stresses that are lower than previous results
 - Cool-down and Lorentz forces will not yield the aluminum bobbin.
 - Assuming 5083-0 (annealed) YP= 110 MPa (16 kpsi)
 - Tensile stress at the coil ends approaches the allowable limit (30 MPa) at maximum operating current (at the extreme end in a small area).
 - Based on the maximum principal stress (σ₁)
 - Shear stress at the coil ends is below the allowable limit (30 MPa) at maximum operating current.
 - Axial compressive stresses at the coil ends do not exceed the yield point of 99.5% pure aluminum (~30 MPa).
 - The completion of a 3D FE analysis may be the next logical step in this study.
 - Some 3D studies have already been successfully run to exhibit iron deflection.

Backup Slides

Lead End Max Tensile Stress @ Cool-down (MPa)

7/16/2015 7/28/2016

24

Lead End Maximum Shear Stress @ Cool-down (MPa)

Lead End Axial Stresses at Cool-down (MPa)

7/16/2015

7/28/2016

ANSYS Structural Analyses of sPHENIX Magnet Coil at Full Current

(superceded on 7/28/2016)

John Cozzolino July 16, 2015

ANSYS FE Structural Analysis of sPHENIX Coil

- 2d axisymmetric steady-state FE analysis of complete coil
 - Includes external aluminum bobbin and G-10 end fillers
 - Geometry and forces taken from Wuzheng Meng's magnetic model – 6/17/2015
 - Coil center is shifted 3cm north relative to iron
 - Coils divided into 24 blocks, each with corresponding radial and axial pressures due to the Lorentz forces at maximum current
 - Thermal stresses from cool-down to 4K included
 - Mechanical properties vs. temperature are included
 - Coil properties E and CTE adjusted for percentage of insulation vs. conductor (Ref Ansaldo Dwg# 620RM07142, pg. 1)
 - » Radial direction 2.0% insulation (all coils)
 - » Axial direction 4.7% (middle coils)
 - » Axial direction 8.1% (end coils)
 - All connections (contacts) are bonded
 - Tensile and shear stresses are studied throughout the coil
 - Shear stress limit: 30 MPa (4350 psi)
 - Tensile stress limit: 30 MPa

Labels on 24 Solenoid Coils

(Not to Scale) W. Meng

Radial Pressure (outward-force per unit area) Table (W. Meng):

	Coils Ave. Ctr.	(MPa)	(PSI)	(MPa)	(PSI)	(MPa)	(PSI)
	Zc (cm)	Inner	Inner	Outer	Outer	Inner+Outer	Inner+Outer
Coils 3b +7b	-165.10	0.7867	114.07	0.0032	0.46	0.7899	114.53
Coils 3a + 7a	-152.38	0.8978	130.19	0.0149	2.17	0.9128	132.35
Coils 4 + 8	-133.30	0.9708	140.77	0.0751	10.89	1.0459	151.66
Coils 5 + 9	-107.85	1.0461	151.68	0.1502	21.77	1.1962	173.45
Coils 6 + 10	-82.40	1.0286	149.15	0.1677	24.32	1.1964	173.47
Coils 1 + 2	-33.34	0.4864	70.53	0.1534	22.24	0.6398	92.76
Coils 11 + 12	39.34	0.4863	70.51	0.1532	22.22	0.6395	92.72
Coils 16 + 20	88.40	1.0275	148.98	0.1664	24.13	1.1939	173.12
Coils 15 + 19	113.85	1.0426	151.18	0.1463	21.21	1.1889	172.40
Coils 14 + 18	139.30	0.9004	130.55	0.0693	10.05	0.9697	140.61
Coils 13a + 17a	158.38	0.9004	130.55	0.0180	2.61	0.9184	133.16
Coils 13b +17b	171.10	0.7944	115.19	0.0095	1.38	0.8039	116.57

Axial Force Table (W. Meng):

	Coils Ave.									
	Ctr.	Fz (N)	Fz(Lb)	Fz (N)	Fz(Lb)	Fz (N)	Fz(Lb)			
	Zc (cm)	Inner	Inner	Outer	Outer	Inner+Outer	Inner+Outer			
Coils 3b + 7b	-165.10	1.23E+06	2.771E+05	1.22E+06	2.73E+05	2.45E+06	5.505E+05			
Coils 3a + 7a	-152.38	7.84E+05	1.761E+05	7.84E+05	1.76E+05	1.57E+06	3.520E+05			
Coils 4 + 8	-133.30	1.01E+06	2.258E+05	1.03E+06	2.30E+05	2.03E+06	4.560E+05			
Coils 5 + 9	-107.85	4.10E+05	9.196E+04	4.47E+05	1.00E+05	8.57E+05	1.924E+05			
Coils 6 + 10	-82.40	-2.97E+05	-6.675E+04	-1.96E+05	-4.41E+04	-4.94E+05	-1.108E+05			
Coils 1 + 2	-33.34	-3.33E+05	-7.479E+04	-3.98E+05	-8.93E+04	-7.31E+05	-1.641E+05			
Coils 11 + 12	39.34	3.32E+05	7.449E+04	3.96E+05	8.89E+04	7.28E+05	1.634E+05			
Coils 16 + 20	88.40	2.96E+05	6.638E+04	1.94E+05	4.36E+04	4.90E+05	1.100E+05			
Coils 15 + 19	113.85	-4.10E+05	-9.212E+04	-4.49E+05	-1.01E+05	-8.59E+05	-1.928E+05			
Coils 14 + 18	139.30	-9.91E+05	-2.225E+05	-1.01E+06	-2.27E+05	-2.00E+06	-4.490E+05			
Coils 13a + 17a	158.38	-7.71E+05	-1.730E+05	-7.69E+05	-1.73E+05	-1.54E+06	-3.457E+05			
Coils 13b + 17b	171.10	-1.22E+06	-2.749E+05	-1.21E+06	-2.71E+05	-2.43E+06	-5.462E+05			
				Total Fz =		7.00E+04	1.57E+04	(with 3 cm	Shift)
						(N)	(Lb)			

FE Mesh (Lead End)

Radial Deflection @ Cool-down Followed by Max Current (LE View)

Axial Deflection @ Cool-down Followed by Max Current (LE View)

Equivalent Stress in Aluminum Bobbin @ Cool-down & Max Current (LE View)

Lead End Max Tensile Stress @ Cool-down & Full Power

Lead End Max Shear Stress @ Cool-down & Full Power

Lead End G-10 Max Tensile & Shear Stress @ Full Power

Non-Lead End Max Shear and Tensile Stresses @ Full Power

Lead End Axial Compressive Stresses at Cool-down & Full Power (MPa)

Non-Lead End Axial Compressive Stresses at Cool-down & Full Power (MPa)

Summary & Conclusions (superceded on 7/28/2016)

- Cool-down and Lorentz forces will not yield the aluminum bobbin.
 - Assuming 5083-0 (annealed) YP= 110 MPa (16 kpsi)
- Tensile stresses at the coil ends exceed the allowable limit (30 MPa) at maximum operating current.
 - Based on the maximum principal stress (σ₁)
- Shear stresses at the coil ends are at the allowable limit (30 MPa) at maximum operating current.
- Axial compressive stresses at the coil ends do not exceed the yield point of 99.5% pure aluminum (~30 MPa).